Toward Ultrahigh-Rate Energy Storage of 3000 mV s-1 in Hollow Carbon: From Methodology to Surface-to-Bulk Synergy Insights

Small. 2023 Dec 27:e2308147. doi: 10.1002/smll.202308147. Online ahead of print.

Abstract

Despite great efforts on economical and functionalized carbon materials, their scalable applications are still restricted by the unsatisfying energy storage capability under high-rate conditions. Herein, theoretical and methodological insights for surface-to-bulk engineering of multi-heteroatom-doped hollow porous carbon (HDPC) is presented, with subtly designed Zn(OH)F nanoarrays as the template. This fine-tuned HDPC delivers an ultrahigh-rate energy storage capability even at a scan rate of 3000 mV s-1 (fully charged within 0.34 s). It preserves a superior capacitance of 234 F g-1 at a super-large current density of 100 A g-1 and showcases an ultralong cycling life without capacitance decay after 50 000 cycles. Through dynamic and theoretical analysis, the key role of in situ surface-modified heteroatoms and defects in decreasing the K+ -adsorption/diffusion energy barrier is clarified, which cooperates with the porous conductive highways toward enhanced surface-to-bulk activity and kinetics. In situ Raman further aids in visualizing the reversibly dynamic adsorption/releasing of the electrolyte ions on the tailored carbon structure during the charge/discharge process. The potential of the design concept is further evidenced by the enhanced performances in water-in-salt electrolytes. This surface-to-bulk nanotechnology opens the path for developing high-performance energy materials to better meet the practical requirements in future.

Keywords: defects; rate performance; surface-to-bulk engineering; synergy mechanisms; tri-doped carbon.