Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants

Mol Neurobiol. 2024 Jan 5. doi: 10.1007/s12035-023-03905-8. Online ahead of print.

Abstract

Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs' health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs' protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function. Potential Role of ER Stress in Modulating Protein Homeostasis in OLs. OLs, produce myelin proteins and provide energy and metabolic support which are susceptible to cellular protein homeostasis and ER protein quality control. 1) UPR plays a different role in activating IRE1/XBP1s, PERK/eIF2α, and ATF6 pathways not only in attempting to restore protein homeostasis to promote cell survival but also aggravating disruption of cellular protein homeostasis to accelerate cell death. 2) PERK pathway facilitated the protein secretion, amino acid metabolism, and stress response to promote cell survival via phosphorylating eIF2α level and strengthening ATF4 expression; Nevertheless, the prolonged activating of the PERK pathway could up-regulate CHOP, GADD34, and other pro-apoptotic factors to further aggravates cell injury. 3) IRE1 and ATF6 pathways enhanced various gene transcription associated with protein folding, secreting, EARD, and ERQC to prompt cell protein homeostasis micro-environment; However, sustained IRE1 and/or ATF6 activity could prompt cell survival toward apoptosis via the pro-apoptotic pathway, inflammation, and other patterns.

Keywords: Endoplasmic Reticulum Stress; Myelination; Oligodendrocytes; Protein Homeostasis; White Matter Injury.

Publication types

  • Review