Complex electrical measurements of waste rock during acid mine drainage generation and release: Kinetic column tests

J Environ Manage. 2024 Feb:351:119996. doi: 10.1016/j.jenvman.2023.119996. Epub 2024 Jan 4.

Abstract

Acid mine drainage (AMD) emanating from waste rock piles (WRPs) at mining sites is a global concern. Successful rehabilitation of these sites requires effective characterization and monitoring of the waste rock during AMD generation/release. Traditional approaches involve ex-situ analysis of waste rock and porewater samples collected via corings and monitoring wells; however, this is highly disruptive, costly, and provides sparsely distributed point information across enormous volumes typical of WRPs. Geoelectrical techniques are a promising approach for non-invasive continuous imaging; however, their application has been limited to 'one-off' imaging with few studies on monitoring waste rock evolution. The objective of this study is to assess the geoelectrical signatures of changing waste rock during AMD generation/release. Field waste rock samples were extracted from three mine WRPs and first characterized for mineralogy and acid generation potential. Kinetic tests were then performed on each sample using leaching columns and humidity cells, with simultaneous measurements of effluent quality and complex electrical conductivity (real and imaginary components measure conduction and polarization, respectively). Results show that real conductivity was highly sensitive to changes associated with AMD leachate quality (e.g., 28,800 to 68 mg/L acidity) and surface of the waste material. Imaginary conductivity measurements identified changes in the waste mineralogy over time, though these signatures were not very distinct, which is likely due to low sulfide contents and limited oxidation (e.g., 0.59 wt% sulfide and 33% air saturation). This study improves our understanding of geoelectrical signatures associated with real waste rock, demonstrating the potential application of the electrical resistivity tomography and induced polarization techniques for mine waste investigations.

Keywords: Complex conductivity; Environmental contamination; Hydrogeophysics; Metal leaching; Time-lapse monitoring.

MeSH terms

  • Mining*
  • Sulfides*

Substances

  • Sulfides