Pentanuclear iron complex for water oxidation: spectroscopic analysis of reactive intermediates in solution and catalyst immobilization into the MOF-based photoanode

J Catal. 2024 Jan:429:115230. doi: 10.1016/j.jcat.2023.115230. Epub 2023 Nov 29.

Abstract

Photoelectrochemical water splitting can produce green hydrogen for industrial use and CO2-neutral transportation, ensuring the transition from fossil fuels to green, renewable energy sources. The iron-based electrocatalyst [FeII4FeIII(μ-3-O)(μ-L)6]3+ (LH = 3,5-bis(2-pyridyl)pyrazole) (1), discovered in 2016, is one of the fastest molecular water oxidation catalysts (WOC) based on earth-abundant elements. However, its water oxidation reaction mechanism has not been yet fully elucidated. Here, we present in situ X-ray spectroscopy and electron paramagnetic resonance (EPR) analysis of electrochemical water oxidation reaction (WOR) promoted by (1) in water-acetonitrile solution. We observed transient reactive intermediates during the in situ electrochemical WOR, consistent with a coordination sphere expansion prior to the onset of catalytic current. At a pre-catalytic (~+1.1 V vs. Ag/AgCl) potential, the distinct g~2.0 EPR signal assigned to FeIII/FeIV interaction was observed. Prolonged bulk electrolysis at catalytic (~+1.6 V vs. Ag/AgCl) potential leads to the further oxidation of Fe centers in (1). At the steady state achieved with such electrolysis, the formation of hypervalent FeV=O and FeIV=O catalytic intermediates was inferred with XANES and EXAFS fitting, detecting a short Fe=O bond at ~1.6 Å. (1) was embedded into MIL-126 MOF with the formation of (1)-MIL-126 composite. The latter was tested in photoelectrochemical WOR and demonstrated an improvement of electrocatalytic current upon visible light irradiation in acidic (pH=2) water solution. The presented spectroscopic analysis gives further insight into the catalytic pathways of multinuclear systems and should help the subsequent development of more energy- and cost-effective catalysts of water splitting based on earth-abundant metals. Photoelectrocatalytic activity of (1)-MIL-126 confirms the possibility of creating an assembly of (1) inside a solid support and boosting it with solar irradiation towards industrial applications of the catalyst.