Flying toward a plastic-free world: Can Drosophila serve as a model organism to develop new strategies of plastic waste management?

Sci Total Environ. 2024 Mar 1:914:169942. doi: 10.1016/j.scitotenv.2024.169942. Epub 2024 Jan 8.

Abstract

The last century was dominated by the widespread use of plastics, both in terms of invention and increased usage. The environmental challenge we currently face is not just about reducing plastic usage but finding new ways to manage plastic waste. Recycling is growing but remains a small part of the solution. There is increasing focus on studying organisms and processes that can break down plastics, offering a modern approach to addressing the environmental crisis. Here, we provide an overview of the organisms associated with plastics biodegradation, and we explore the potential of harnessing and integrating their genetic and biochemical features into a single organism, such as Drosophila melanogaster. The remarkable genetic engineering and microbiota manipulation tools available for this organism suggest that multiple features could be amalgamated and modeled in the fruit fly. We outline feasible genetic engineering and gut microbiome engraftment strategies to develop a new class of plastic-degrading organisms and discuss of both the potential benefits and the limitations of developing such engineered Drosophila melanogaster strains.

Keywords: Bioremediation; Drosophila melanogaster; Gut microbiota manipulation; Insect synthetic biology; Plastic waste management; Transgenic technologies.

Publication types

  • Review

MeSH terms

  • Animals
  • Drosophila
  • Drosophila melanogaster
  • Plastics* / chemistry
  • Recycling
  • Waste Management*

Substances

  • Plastics