Background: While depression has been associated with alterations in the hypothalamic-pituitary adrenal (HPA) axis function, there is still controversy regarding the nature and extent of the dysfunction, such as in the debate about hypercortisolism vs. hypocortisolism. It may therefore be necessary to understand whether and how HPA axis function in depression is linked to mRNA expression of key genes regulating this system.
Methods: We studied 163 depressed outpatients, most of whom were chronically ill, and 181 healthy controls. Blood mRNA expression levels of NR3C1 (including GRα, GRβ, and GR-P isoforms), FKBP4, and FKBP5 were measured at baseline. HPA axis feedback sensitivity was measured by the dexamethasone (Dex)/corticotropin-releasing hormone (CRH) test. The association between mRNA expression levels and HPA axis feedback sensitivity was examined.
Results: Compared to controls, patients showed significantly higher expression of GRα and lower expression of FKBP5, and higher post-Dex cortisol levels, even after controlling for age and sex. FKBP5 expression was significantly positively correlated with cortisol levels in patients, while GRα expression was significantly negatively correlated with cortisol levels in controls.
Limitations: Most patients were taking psychotropic medications. The large number of correlation tests may have caused type I errors.
Conclusions: The tripartite relationship between depression, mRNA expression of GR and FKBP5, and HPA axis function suggests that the altered gene expression affects HPA axis dysregulation and, as a result, impacts the development and/or illness course of depressive disorder. The combination of increased GRα expression and decreased FKBP5 expression may serve as a biomarker for chronic depression.
Keywords: Cortisol; Depression; FKBP5; Gene expression; Glucocorticoid receptor (GR); Hypothalamic-pituitary adrenal (HPA) axis.
Copyright © 2024 Elsevier B.V. All rights reserved.