A comparative evaluation of physical properties of CAD/CAM complete denture resins- an in vitro study

BMC Oral Health. 2024 Jan 10;24(1):65. doi: 10.1186/s12903-023-03708-2.

Abstract

Background: In dentistry, there is a growing preference for computer-aided design and computer-aided manufacturing (CAD/CAM) systems over traditional laboratory procedures. However, there is not much literature comparing various CAD/CAM materials. Thus, this study aimed to assess and compare the color stability and hardness of gingival and tooth colored milled and 3D-printed acrylic resins.

Materials and methods: Four types of CAD/CAM materials were prepared: 3D-printed pink shade (PP), milled polymenthymethacrylate (PMMA) pink shade (MP), 3D-printed tooth shade (PT) and milled PMMA tooth shade (MT) (n = 6). For hardness, disc shaped samples of 15 mm × 2 mm and for color stability, bar shaped samples of 65mmx10mmx2.5 mm were prepared and polished. Vickers hardness test was performed in a microhardness tester. Color stability test was done by immersing in coffee solution and coca cola for 7 days. Day 0 and day 7 measurements were recorded using a digital spectrophotometer and the change in color was calculated. For statistical analysis, one-way ANOVA and Tukey's post hoc tests were done.

Results: For color stability, milled PMMA was superior to 3D-printed resin samples. Milled pink and tooth shade samples had similar color stability, whereas 3D-printed tooth shade samples were more color stable as compared to pink shade 3D-printed samples. For hardness, milled tooth shade PMMA was the most superior one, followed by 3D-printed tooth shade, whereas pink shade milled PMMA and 3D-printed resin samples had similar hardness values and were inferior to the tooth shade CAD/CAM materials.

Conclusion: Color stability of milled PMMA is superior to that of 3D-printed resins. Hardness of tooth shade milled and 3D-printed resins is more than that of pink shade milled and 3D-printed resins.

Keywords: CAD-CAM; Complete dentures; PMMA; Physical properties.

MeSH terms

  • Computer-Aided Design
  • Dental Materials
  • Denture, Complete
  • Gingiva
  • Humans
  • Polymethyl Methacrylate*
  • Research Design*

Substances

  • Polymethyl Methacrylate
  • Dental Materials