HOCl-producing electrochemical bandage for treating Pseudomonas aeruginosa-infected murine wounds

Antimicrob Agents Chemother. 2024 Feb 7;68(2):e0121623. doi: 10.1128/aac.01216-23. Epub 2024 Jan 12.

Abstract

The growing threat of antibiotic-resistant bacterial pathogens necessitates the development of alternative antimicrobial approaches. This is particularly true for chronic wound infections, which commonly harbor biofilm-dwelling bacteria. A novel electrochemical bandage (e-bandage) delivering low-levels of hypochlorous acid (HOCl) was evaluated against Pseudomonas aeruginosa murine wound biofilms. 5 mm skin wounds were created on the dorsum of mice and infected with 106 colony-forming units (CFU) of P. aeruginosa. Biofilms were formed over 2 days, after which e-bandages were placed on the wound beds and covered with Tegaderm. Mice were administered Tegaderm-only (control), non-polarized e-bandage (no HOCl production), or polarized e-bandage (using an HOCl-producing potentiostat), with or without systemic amikacin. Purulence and wound areas were measured before and after treatment. After 48 hours, wounds were harvested for bacterial quantification. Forty-eight hours of polarized e-bandage treatment resulted in mean biofilm reductions of 1.4 log10 CFUs/g (P = 0.0107) vs non-polarized controls and 2.2 log10 CFU/g (P = 0.004) vs Tegaderm-only controls. Amikacin improved CFU reduction in Tegaderm-only (P = 0.0045) and non-polarized control groups (P = 0.0312) but not in the polarized group (P = 0.3876). Compared to the Tegaderm-only group, there was less purulence in the polarized group (P = 0.009). Wound closure was neither impeded nor improved by either polarized or non-polarized e-bandage treatment. Concurrent amikacin did not impact wound closure or purulence. In conclusion, an HOCl-producing e-bandage reduced P. aeruginosa in wound biofilms with no impairment in wound healing, representing a promising antibiotic-free approach for addressing wound infection.

Keywords: Pseudomonas aeruginosa; anti-biofilm; electrochemical bandage; hypochlorous acid; in vivo wound infection.

MeSH terms

  • Amikacin
  • Animals
  • Anti-Bacterial Agents
  • Bandages
  • Biofilms
  • Hypochlorous Acid
  • Mice
  • Pseudomonas Infections* / microbiology
  • Pseudomonas aeruginosa
  • Wound Infection* / microbiology

Substances

  • Hypochlorous Acid
  • Amikacin
  • Anti-Bacterial Agents