Kinetics Conditioning of (Electro) Chemically Stable Zn Anode with pH Regulation Toward Long-Life Zn-Storage Devices

Small. 2024 Jan 15:e2310341. doi: 10.1002/smll.202310341. Online ahead of print.

Abstract

The safety, low cost, and high power density of aqueous Zn-based devices (AZDs) appeal to large-scale energy storage. Yet, the presence of hydrogen evolution reaction (HER) and chemical corrosion in the AZDs leads to local OH- concentration increasement and the formation of Znx SOy (OH)z •nH2 O (ZHS) by-products at the Zn/electrolyte interface, causing instability and irreversibility of the Zn-anodes. Here, a strategy is proposed to regulate OH- by introducing a bio-sourced/renewable polypeptide (ɛ-PL) as a pH regulator in electrolyte. The consumption of OH- species is evaluated through in vitro titration and cell in vivo in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy at a macroscopic and molecular level. The introduction of ɛ-PL is found to significantly suppress the formation of ZHS and associated side reactions, and reduce the local coordinated H2 O of the Zn2+ solvation shell, widening electrochemical stable window and suppressing OH- generation during HER. As a result, the inclusion of ɛ-PL improves the cycle time of Zn/Zn symmetrical cells from 15 to 225 h and enhances the cycle time of aqueous Zn- I2 cells to 1650 h compared to those with pristine electrolytes. This work highlights the potential of kinetical OH- regulation for by-product and dendrite-free AZDs.

Keywords: OH−-regulation; Zn corrosion; Zn-metal anode; aqueous Zn batteries; ɛ-PL additive.