Clonal haematopoiesis of indeterminate potential and atrial fibrillation: an east Asian cohort study

Eur Heart J. 2024 Jan 17:ehad869. doi: 10.1093/eurheartj/ehad869. Online ahead of print.


Background and aims: Both clonal haematopoiesis of indeterminate potential (CHIP) and atrial fibrillation (AF) are age-related conditions. This study investigated the potential role of CHIP in the development and progression of AF.

Methods: Deep-targeted sequencing of 24 CHIP mutations (a mean depth of coverage = 1000×) was performed in 1004 patients with AF and 3341 non-AF healthy subjects. Variant allele fraction ≥ 2.0% indicated the presence of CHIP mutations. The association between CHIP and AF was evaluated by the comparison of (i) the prevalence of CHIP mutations between AF and non-AF subjects and (ii) clinical characteristics discriminated by CHIP mutations within AF patients. Furthermore, the risk of clinical outcomes-the composite of heart failure, ischaemic stroke, or death-according to the presence of CHIP mutations in AF was investigated from the UK Biobank cohort.

Results: The mean age was 67.6 ± 6.9 vs. 58.5 ± 6.5 years in AF (paroxysmal, 39.0%; persistent, 61.0%) and non-AF cohorts, respectively. CHIP mutations with a variant allele fraction of ≥2.0% were found in 237 (23.6%) AF patients (DNMT3A, 13.5%; TET2, 6.6%; and ASXL1, 1.5%) and were more prevalent than non-AF subjects [356 (10.7%); P < .001] across the age. After multivariable adjustment (age, sex, smoking, body mass index, diabetes, and hypertension), CHIP mutations were 1.4-fold higher in AF [adjusted odds ratio (OR) 1.38; 95% confidence interval 1.10-1.74, P < .01]. The ORs of CHIP mutations were the highest in the long-standing persistent AF (adjusted OR 1.50; 95% confidence interval 1.14-1.99, P = .004) followed by persistent (adjusted OR 1.44) and paroxysmal (adjusted OR 1.33) AF. In gene-specific analyses, TET2 somatic mutation presented the highest association with AF (adjusted OR 1.65; 95% confidence interval 1.05-2.60, P = .030). AF patients with CHIP mutations were older and had a higher prevalence of diabetes, a longer AF duration, a higher E/E', and a more severely enlarged left atrium than those without CHIP mutations (all P < .05). In UK Biobank analysis of 21 286 AF subjects (1297 with CHIP and 19 989 without CHIP), the CHIP mutation in AF is associated with a 1.32-fold higher risk of a composite clinical event (heart failure, ischaemic stroke, or death).

Conclusions: CHIP mutations, primarily DNMT3A or TET2, are more prevalent in patients with AF than non-AF subjects whilst their presence is associated with a more progressive nature of AF and unfavourable clinical outcomes.

Keywords: Atrial fibrillation; Cardiac remodelling; Clonal haematopoiesis; Clonal haematopoiesis of indeterminate potential; Inflammation; Pathophysiology.

Grants and funding