Contributions of collagen and elastin to elastic behaviours of tendon fascicle

Acta Biomater. 2024 Mar 1:176:334-343. doi: 10.1016/j.actbio.2024.01.014. Epub 2024 Jan 17.


Tendon exhibits the capacity to be stretched and to return to its original length without suffering structural damage in vivo, a capacity known as elastic recoil. Collagen fibres are aligned longitudinally and elastin fibres mostly run parallel to collagen fibres in tendon. However, their interactions and contributions to tendon elastic behaviours are not well understood. The present study examined functional roles of collagen and elastin in tendon elastic behaviours using a variety of mechanical tests. We prepared three types of fascicle specimens from mouse tail tendon: fascicles freshly isolated, those digested with elastase in PBS to selectively remove elastin, and those incubated in PBS without elastase. A quasi-static tensile test demonstrated that elastase-treated fascicles had higher tangent moduli and strength compared to fresh and PBS fascicles. Cyclic stretching tests showed that fresh and PBS fascicles could withstand cyclic strain at both small and large amplitudes, but elastase-treated fascicles could only behave elastically to a limited degree. Fibre-sliding analysis revealed that fresh fascicles could be elongated both through stretching of collagen fibers and through movement of the fibres. However, elastase-treated fascicles could be stretched only via fibre stretching. This evidence suggests that normal tendons can be extended through both fibre stretching and fibre sliding, whereas tendons without elastin can only extend as much as collagen fibers can withstand. Accordingly, collagen fibres mainly contribute to tendon elastic behaviours by furnishing rigidity and elasticity, whereas elastin provides tendon viscoelasticity and also enables sliding of collagen fibres during elastic behaviours. STATEMENT OF SIGNIFICANCE: The present study revealed distinct mechanical functions of collagen and elastin fibres in elastic behaviours of mouse tail tendon fascicle using a variety of mechanical tests at both microscopic and macroscopic levels. It was demonstrated that collagen mainly governs tendon fascicle rigidity and elasticity, but only possesses limited extensibility, whereas elastin contributes to viscoelasticity and collagen fibre sliding, enabling elastic recoil behaviour against relatively large deformation. By their interactions, tendon can be elongated without suffering major structural damage and withstand a large magnitude of tensile force in response to mechanical loading. Such information should be particularly useful in designing collagen-based biomaterials such as artificial tendons, in that previous studies have merely considered collagen without incorporation of elastin.

Keywords: Collagen; Elastin; Mechanical properties; Sliding; Tendon.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Collagen* / metabolism
  • Elastin* / metabolism
  • Extracellular Matrix / metabolism
  • Mice
  • Pancreatic Elastase / analysis
  • Pancreatic Elastase / metabolism
  • Stress, Mechanical
  • Tendons / physiology


  • Collagen
  • Elastin
  • Pancreatic Elastase