Dynamical Criticality of Magnetization Transfer in Integrable Spin Chains

Phys Rev Lett. 2024 Jan 5;132(1):017101. doi: 10.1103/PhysRevLett.132.017101.

Abstract

Recent studies have found that fluctuations of magnetization transfer in integrable spin chains violate the central limit property. Here, we revisit the problem of anomalous counting statistics in the Landau-Lifshitz field theory by specializing to two distinct anomalous regimes featuring a dynamical critical point. By performing optimized numerical simulations using an integrable space-time discretization, we extract the algebraic growth exponents of time-dependent cumulants which attain their threshold values. The distinctly non-Gaussian statistics of magnetization transfer in the easy-axis regime is found to converge toward the universal distribution of charged single-file systems. At the isotropic point, we infer a weakly non-Gaussian distribution, corroborating the view that superdiffusive spin transport in integrable spin chains does not belong to any known dynamical universality class.