Inhibition of canine parvovirus 2 (CPV-2) replication by TAT-scFv through targeting of the viral structural protein VP2 of CPV-2

New Microbiol. 2024 Jan;46(4):381-389.

Abstract

Canine parvovirus (CPV) causes severe infectious disease with a high mortality rate in dogs. CPV is still a major health issue of dogs in the clinic. Therefore, there is an urgent need to develop effective drugs to treat the disease. In this study, we fused the transactivating transcriptional activator peptide (TAT) with scFv. TAT-scFv was identified by Western blot. CCK8 kit was used to detect the toxicity of TAT-scFv to cells. The binding activity of TAT-scFv to CPV-2-VP2 was detected by DAS ELISA. The cell uptake rate of TAT-scFv was assessed by IFA. After infection with CPV-2, F81 cells were incubated by TAT-scFv. The replication of virus was measured to determine the neutralization effect of TAT-scFv on intracellular and extracellular viruses. Protein docking was used to predict the amino acid (AA) sites of VP2 binding to TAT-scFv. TAT-scFv was expressed in Escherichia coli and purified. The DAS ELISA showed that TAT-scFv could bind with CPV-2-VP2. We demonstrated that TAT-scFv entered cells in a dose-dependent and time-dependent manner and effectively inhibited the replication of CPV-2. Using protein docking, we determined the interaction pattern and found that the N-terminal region (AA 41-49) and the C-terminal region (AA 558) of VP2 interacted with the TAT-scFv. Taken together, these results suggest that, TAT-scFv may be a potential antiviral drug for inhibiting CPV-2 replication and controlling disease caused by CPV-2.

Keywords: Canine parvovirus; TAT; VP2; replication; single-chain antibody variable fragment.

MeSH terms

  • Animals
  • Antiviral Agents / pharmacology
  • Dogs
  • Escherichia coli / genetics
  • Parvovirus, Canine*
  • Peptides

Substances

  • Peptides
  • Antiviral Agents