Toxic Effects of Bisphenol AF Exposure on the Reproduction and Liver of Female Marine Medaka (Oryzias melastigma)

Animals (Basel). 2024 Jan 10;14(2):222. doi: 10.3390/ani14020222.

Abstract

In recent years, bisphenol AF (BPAF) in aquatic environments has drawn attention to its ecological risks. This study aims to investigate the toxic effects of BPAF (188.33 μg/L) exposure for 30 days on female marine medaka (Oryzias melastigma). On the 10th and 30th day of exposure, the toxicity was evaluated using histological analysis of the liver and ovaries and the transcription levels of genes related to the antioxidant system, immune system, and hypothalamic-pituitary-gonadal (HPG) axis. Findings revealed that (1) BPAF exposure caused vacuolation, karyopyknosis and karyolysis in the liver of marine medaka, and the toxic impact augmented with duration; (2) exposure to BPAF for 10 days facilitated the growth and maturation of primary ova, and this exposure had a comparatively inhibitory effect after 30 days; (3) exposure to BPAF resulted in a biphasic regulation of the transcriptional abundance of genes involved in antioxidant and inflammatory response (e.g., il-8, cat), with an initial up-regulation followed by down-regulation. Additionally, it disrupted the transcriptional pattern of HPG axis-related genes (e.g., 3βhsd, arα). In conclusion, 188.33 μg/L BPAF can alter the expression levels of functionally related genes, impair the structural integrity of marine organisms, and pose a threat to their overall health.

Keywords: aquatic ecosystem; bisphenols; endocrine disruptor; gene expression; immune response.