Whole Genome Sequencing and Comparative Analysis of the First Ehrlichia canis Isolate in China

Microorganisms. 2024 Jan 8;12(1):125. doi: 10.3390/microorganisms12010125.

Abstract

Ehrlichia canis, a prominent tick-borne pathogen causing canine monocytic ehrlichiosis (CME), is one of the six recognized Ehrlichia species worldwide. Despite its widespread presence in ticks and host dogs in China, comprehensive genomic information about this pathogen remains limited. This study focuses on an in-depth analysis of E. canis YZ-1, isolated and cultured from an infected dog in China. The complete genome of E. canis YZ-1 was sequenced (1,314,789 bp, 1022 genes, 29% GC content, and 73% coding bases), systematically characterizing its genomic elements and functions. Comparative analysis with representative genomes of Ehrlichia species, including E. canis strain Jake, E. chaffeensis, Ehrlichia spp., E. muris, E. ruminantium, and E. minasensis, revealed conserved genes, indicating potential evolutionary connections with E. ruminantium. The observed reduction in virulence-associated genes, coupled with a type IV secretion system (T4SS), suggests an intricate balance between pathogenicity and host adaptation. The close relationship with E. canis Jake and E. chaffeensis, alongside nuanced genomic variations with E. ruminantium and E. mineirensis, underscores the need to explore emerging strains and advancements in sequencing technologies continuously. This genetic insight opens avenues for innovative medications, studies on probiotic resistance, development of new detection markers, and progress in vaccine development for ehrlichiosis. Further investigations into the functional significance of identified genes and their role in host-pathogen interactions will contribute to a more holistic comprehension of Ehrlichia's biology and its implications for pathogenicity and transmission.

Keywords: Ehrlichia canis; dogs; tick-borne pathogens; whole genome sequencing.