Neuroinflammation driven by Human Immunodeficiency Virus-1 (HIV-1) directs the expression of long noncoding RNA RP11-677M14.2 resulting in dysregulation of Neurogranin in vivo and in vitro

Res Sq [Preprint]. 2024 Jan 3:rs.3.rs-3810214. doi: 10.21203/rs.3.rs-3810214/v1.

Abstract

Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1b. Moreover, in vitro overexpression of this lncRNA impact Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced neuroinflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.

Publication types

  • Preprint