Magnesium decreases urine supersaturation but not calcium oxalate stone formation in genetic hypercalciuric stone-forming rats

Nephron. 2024 Jan 23. doi: 10.1159/000534495. Online ahead of print.

Abstract

Background/aims: Hypercalciuria is the most common identifiable risk factor predisposing to CaOx stone formation. Increased oral magnesium intake may lead to decreased CaOx stone formation by binding intestinal Ox leading to decreased absorption and/or binding urinary Ox to decrease urinary supersaturation. This study assessed the effect of oral magnesium on 24-hour urine ion excretion, supersaturation, and kidney stone formation in a genetic hypercalciuric stone-forming (GHS) rat model of human idiopathic hypercalciuria.

Methods: When fed the oxalate precursor, hydroxyproline, every GHS rat develops CaOx stones. The GHS rats were fed a normal calcium and phosphorus diet with hydroxyproline to induce CaOx , were divided into three groups of ten rats per group: control diet with 4.0 g/kg MgO, low MgO diet (0.5 g/kg), and high MgO diet (8 g/kg). At 6 weeks, twenty-four-hour urines were collected, and urine chemistry and supersaturation were determined. Stone formation was quantified.

Results: The GHS rats fed the low and high Mg diets had a significant reduction and increase, respectively, in urinary Mg compared to those fed the control diet. Dietary Mg did not alter urine Ca excretion while the low Mg diet led to a significant fall in urinary Ox. Urine supersaturation with respect to CaOx was significantly increased with low Mg, whereas urine supersaturation was significantly decreased with high Mg. There was no effect of dietary Mg on stone formation within 6 weeks of treatment.

Conclusion: Dietary magnesium decreases urine supersaturation but not CaOx stone formation in GHS rats.

Publication types

  • News