Purpose: Guided bone regeneration (GBR) is an accepted method in dental practice that can successfully increase the bone volume of the host at sites chosen for implant placement; however, existing GBR membranes exhibit rapid absorption and lack of adequate space maintenance capabilities. We aimed to compare the effectiveness of a newly developed resorbable bilayer membrane composed of poly (L-lactic acid) and poly (-caprolactone) (PLACL) with that of a collagen membrane in a rat GBR model.
Methods: The rat calvaria was used as an experimental model, in which a plastic cylinder was placed. We operated on 40 male Fisher rats and subsequently performed micro-computed tomography and histomorphometric analyses to assess bone regeneration.
Results: Significant bone regeneration was observed, which was and similar across all the experimental groups. However, after 24 weeks, the PLACL membrane demonstrated significant resilience, and sporadic partial degradation. This extended preservation of the barrier effect has great potential to facilitate optimal bone regeneration.
Conclusions: The PLACL membrane is a promising alternative to GBR. By providing a durable barrier and supporting bone regeneration over an extended period, this resorbable bilayer membrane could address the limitations of the current membranes. Nevertheless, further studies and clinical trials are warranted to validate the efficacy and safety of The PLACL membrane in humans.
Keywords: Dental implant; Guided bone regeneration; PLACL; Resorbable bilayer membrane.
© 2024. The Author(s).