Animal Models in Regulatory Breakpoint Determination: Review of New Drug Applications of Approved Antibiotics from 2014-2022

J Pers Med. 2024 Jan 19;14(1):111. doi: 10.3390/jpm14010111.

Abstract

We sought to better understand the utility and role of animal models of infection for Food and Drug Administration (FDA)-approved antibiotics for the indications of community-, hospital-acquired-, and ventilator-associated bacterial pneumonia (CABP, HABP, VABP), complicated urinary tract infection (cUTI), complicated intra-abdominal infection (cIAI), and acute bacterial skin and structural infections (ABSSSIs). We reviewed relevant documents from new drug applications (NDA) of FDA-approved antibiotics from 2014-2019 for the above indications. Murine neutropenic thigh infection models supported the choice of a pharmacokinetic-pharmacodynamic (PKPD) target in 11/12 NDAs reviewed. PKPD targets associated with at least a 1-log bacterial decrease were commonly considered ideal (10/12 NDAs) to support breakpoints. Plasma PK, as opposed to organ specific PK, was generally considered most reliable for PKPD correlation. Breakpoint determination was multi-disciplinary, accounting at minimum for epidemiologic cutoffs, non-clinical PKPD, clinical exposure-response and clinical efficacy. Non-clinical PKPD targets in combination with probability of target attainment (PTA) analyses generated breakpoints that were consistent with epidemiologic cutoffs and clinically derived breakpoints. In 6/12 NDAs, there was limited data to support clinically derived breakpoints, and hence the non-clinical PKPD targets in combination with PTA analyses played a heightened role in the final breakpoint determination. Sponsor and FDA breakpoint decisions were in general agreement. Disagreement may have arisen from differences in the definition of the optimal PKPD index or the ability to extrapolate protein binding from animals to humans. Overall, murine neutropenic thigh infection models supported the reviewed NDAs by providing evidence of pre-clinical efficacy and PKPD target determination, and played, in combination with PTA analysis, a significant role in breakpoint determination for labeling purposes.

Keywords: Food and Drug Administration; animal models; antibiotics; breakpoint determination; clinical pharmacology.

Grants and funding

This research received no external funding.