Effect of synthesis conditions on the porous texture of activated carbons obtained from Tara Rubber by FeCl3 activation

Sci Rep. 2024 Jan 27;14(1):2266. doi: 10.1038/s41598-024-52112-5.

Abstract

This paper presents the results of an unique analysis of the influence of the mass ratio of activator FeCl3 to precursor and the temperature of the activation process on the formation of the porous structure of activated carbons obtained from Tara Rubber by FeCl3 activation. The study used the new numerical clustering based adsorption analysis method and the quenched solid density functional theory, taking into account, among other things, the heterogeneity of the analysed surface which is a new approach rarely used in the analysis of the porous structure of adsorbents. On the basis of the calculation results, it was concluded that the activated carbon with the most developed porous texture was obtained at a mass ratio (FeCl3:Tara Rubber) of 2, at an activation process temperature of 800 °C. This activated carbon is also characterised by the lowest degree of surface heterogeneity and at the same time, however, the widest range of micropores compared to activated carbons obtained at other mass ratios. The analyses carried out further demonstrated the valuable and complementary information obtained from the structure analysis methods and their high utility in practical applications, especially in the development of new industrial technologies for the production of adsorbents and the selection of optimal conditions for their production.