Cardiovascular and respiratory consequences of tension pneumothorax

Bull Eur Physiopathol Respir. Nov-Dec 1986;22(6):545-9.


The physiologic responses to acute pneumothorax were investigated in awake, standing sheep. Pleural pressure (Ppl) was raised in graded increments by injecting air from a 500 ml syringe into the pleural cavity of eight sheep to produce pneumothorax volumes of 0, 17, 35 and 45 At the maximum value of 45 (approximately equal to 1,400 ml), Ppl at end-expiration was raised to 10 +/- 2 mmHg (mean +/- SD) whereas end-inspiratory Ppl remained negative in half the sheep as the result of increased thoracic pressure swings. The most striking haemodynamic impairment was a 22% fall in stroke volume. Cardiac output, however, remained fixed at baseline values as a result of a 28% rise in heart rate. Although hypotension has been commonly held as a consequence of severe pneumothorax, mean systemic arterial pressure increased, rising by 19% in the entire group at the maximal pneumothorax tolerated. Pulmonary gas exchange was significantly disrupted by pneumothorax, as indicated by both a 40% fall in Pao2 and a 19% reduction in arterial oxygen content. Despite a reduction in tidal volume, the sheep initially remained eucapnic by generating an increased respiratory rate and slightly increasing minute-ventilation. However, at pneumothorax volumes of 45 ml X kg-1, the sheep were no longer able to sustain minute-ventilation and a small rise in PaCO2 followed. The reduced arterial oxygen content and the fixed cardiac output led to a progressive reduction in systemic oxygen transport.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acute Disease
  • Animals
  • Blood Pressure
  • Female
  • Hemodynamics*
  • Oxygen / blood
  • Pneumothorax / physiopathology*
  • Pulmonary Circulation
  • Pulmonary Gas Exchange
  • Respiration*
  • Sheep


  • Oxygen