Correlates of axonal content in healthy adult span: Age, sex, myelin, and metabolic health

Cereb Circ Cogn Behav. 2024 Jan 12:6:100203. doi: 10.1016/j.cccb.2024.100203. eCollection 2024.

Abstract

As the emerging treatments that target grey matter pathology in Alzheimer's Disease have limited effectiveness, there is a critical need to identify new neural targets for treatments. White matter's (WM) metabolic vulnerability makes it a promising candidate for new interventions. This study examined the age and sex differences in estimates of axonal content, as well the associations of with highly prevalent modifiable health risk factors such as metabolic syndrome and adiposity. We estimated intra-axonal volume fraction (ICVF) using the Neurite Orientation Dispersion and Density Imaging (NODDI) in a sample of 89 cognitively and neurologically healthy adults (20-79 years). We showed that ICVF correlated positively with age and estimates of myelin content. The ICVF was also lower in women than men, across all ages, which difference was accounted for by intracranial volume. Finally, we found no association of metabolic risk or adiposity scores with the current estimates of ICVF. In addition, the previously observed adiposity-myelin associations (Burzynska et al., 2023) were independent of ICVF. Although our findings confirm the vulnerability of axons to aging, they suggest that metabolic dysfunction may selectively affect myelin content, at least in cognitively and neurologically healthy adults with low metabolic risk, and when using the specific MRI techniques. Future studies need to revisit our findings using larger samples and different MRI approaches, and identify modifiable factors that accelerate axonal deterioration as well as mechanisms linking peripheral metabolism with the health of myelin.

Keywords: Adiposity; Aging; Axons; BMI; Metabolic syndrome; Myelin; Obesity; White matter.