Scinderin promotes glioma cell migration and invasion via remodeling actin cytoskeleton

World J Clin Oncol. 2024 Jan 24;15(1):32-44. doi: 10.5306/wjco.v15.i1.32.


Background: Glioma is one of the most common intracranial tumors, characterized by invasive growth and poor prognosis. Actin cytoskeletal rearrangement is an essential event of tumor cell migration. The actin dynamics-related protein scinderin (SCIN) has been reported to be closely related to tumor cell migration and invasion in several cancers.

Aim: To investigate the role and mechanism of SCIN in glioma.

Methods: The expression and clinical significance of SCIN in glioma were analyzed based on public databases. SCIN expression was examined using real-time quantitative polymerase chain reaction and Western blotting. Gene silencing was performed using short hairpin RNA transfection. Cell viability, migration, and invasion were assessed using cell counting kit 8 assay, wound healing, and Matrigel invasion assays, respectively. F-actin cytoskeleton organization was assessed using F-actin staining.

Results: SCIN expression was significantly elevated in glioma, and high levels of SCIN were associated with advanced tumor grade and wild-type isocitrate dehydrogenase. Furthermore, SCIN-deficient cells exhibited decreased proliferation, migration, and invasion in U87 and U251 cells. Moreover, knockdown of SCIN inhibited the RhoA/focal adhesion kinase (FAK) signaling to promote F-actin depolymerization in U87 and U251 cells.

Conclusion: SCIN modulates the actin cytoskeleton via activating RhoA/FAK signaling, thereby promoting the migration and invasion of glioma cells. This study identified the cancer-promoting effect of SCIN and provided a potential therapeutic target for the treatment of glioma.

Keywords: Actin cytoskeleton; Depolymerization; Glioma; RhoA/FAK signaling; Scinderin.