Quality Control Method and Device for Producing Agarose Micropads

MicroPubl Biol. 2024 Jan 26:2024:10.17912/micropub.biology.001081. doi: 10.17912/micropub.biology.001081. eCollection 2024.

Abstract

In brightfield and fluorescence microscopy, capturing images that show well-focused and immobile microorganisms can be challenging. An agarose-based gel pad reduces the variability of results, especially in conditions like uneven specimen staging, variable fluid dynamics, and Brownian motion that plague conventional wet mount setups. To correct these discrepancies during image acquisition, we analyzed three micropad preparation setups. We tested the quality and consistency of pads and images resulting from each setup. Our examination reveals that improved gel pad flatness is associated with better image quality. Moreover, we observe increased consistency in gel pad construction connected to the use of a 3D-printed setup. These findings highlight the technical benefits arising from incorporating micropad-generating platforms that increase the consistency of results in imaging pipelines. Additionally, our use of a quantitative approach to examine pad flatness suggests its inclusion in quality control pipelines to reduce variation in gel pad construction and image quality over time and between investigators. Finally, our use of a 3D-printed setup coupled with a quantitative downstream routine suggests their application in microscopy experiments that involve model organisms relevant to human health and disease.

Grants and funding

Lechleiter Fund