Detecting the impacts of humidity, rainfall, temperature, and season on chikungunya, dengue and Zika viruses in Aedes albopictus mosquitoes from selected sites in Cebu city, Philippines

Virol J. 2024 Feb 15;21(1):42. doi: 10.1186/s12985-024-02310-4.

Abstract

Background: Aedes albopictus is the secondary vector for dengue virus (DENV) in the Philippines, and also harbors chikungunya (CHIKV) and Zika (ZIKV) viruses. This study aimed to determine the minimum infection rates (MIRs) of CHIKV, DENV serotypes, and ZIKV in Ae. albopictus collected from selected two-site categories by altitude (highland [H] and lowland [L] sites) in Cebu city, Philippines during the wet (WS) and dry seasons (DS) of 2021-2022, and to explore the relationships between these arboviral MIRs and the local weather.

Methods: The viral RNA extracts in pooled and reared adult Ae. albopictus collected during the DS and WS from two-site categories were subjected to RT-PCR to amplify and detect gene loci specific for CHIKV, DENV-1 to DENV-4, and ZIKV and analyzed with the weather data.

Results: The range of CHIKV MIRs was higher in the WS (13.61-107.38 infected individuals per 1,000 mosquitoes) than in the DS (13.22-44.12), but was similar between the two-site categories. Rainfall (RF) influenced the CHIKV MIR. The MIR ranges of both DENV-2 (WS: H = 0, L = 0; DS: H = 0-5.92; L = 0-2.6) and DENV-4 (WS: H = 0, L = 0-2.90; DS: H = 2.96-6.13, L = 0-15.63) differed by season but not between the two-site categories. Relative humidity (RH), RF, and temperature did not influence DENVs' MIRs. The MIR range of ZIKV was similar in both seasons (WS: 11.36-40.27; DS: 0-46.15) and two-site categories (H = 0-90.91, L = 0-55.56). RH and temperature influenced ZIKV MIR.

Conclusions: RF influenced CHIKV MIR in Ae. albopictus, whereas RH and temperature influenced that of ZIKV. Season influenced the MIRs of CHIKV and DENVs but not in ZIKV. Ae. albopictus were co-infected with CHIKV, DENVs, and ZIKV in both highland and lowland sites in Cebu city. Recommendations include all-year-round implementation of the Philippine Department of Health's 4S enhanced strategy and installation of water pipelines in rural highlands for vector and disease control. Our findings are relevant to protect public health in the tropics in this climate change.

Keywords: Arboviral diseases; Asian tiger mosquitoes; Chikungunya; Dengue; Zika.

MeSH terms

  • Adult
  • Aedes*
  • Animals
  • Chikungunya Fever* / diagnosis
  • Chikungunya Fever* / epidemiology
  • Dengue Virus* / genetics
  • Dengue*
  • Humans
  • Humidity
  • Mosquito Vectors
  • Philippines / epidemiology
  • Seasons
  • Temperature
  • Zika Virus Infection* / diagnosis
  • Zika Virus* / genetics

Supplementary concepts

  • Aedes albopictus