Highly impaired individuals stand to benefit greatly from cutting-edge bionic technology, however concurrent functional deficits may complicate the adaptation of such technology. Here, we present a case in which a visually impaired individual with bilateral burn injury amputation was provided with a novel transradial neuromusculoskeletal prosthesis comprising skeletal attachment via osseointegration and implanted electrodes in nerves and muscles for control and sensory feedback. Difficulties maintaining implant hygiene and donning and doffing the prosthesis arose due to his contralateral amputation, ipsilateral eye loss, and contralateral impaired vision necessitating continuous adaptations to the electromechanical interface. Despite these setbacks, the participant still demonstrated improvements in functional outcomes and the ability to control the prosthesis in various limb positions using the implanted electrodes. Our results demonstrate the importance of a multidisciplinary, iterative, and patient-centered approach to making cutting-edge technology accessible to patients with high levels of impairment.