3 nm-wide Cyanometallate Fe-Co Tape Exhibiting Single-Chain Magnet Behavior

Inorg Chem. 2024 Mar 4;63(9):4063-4071. doi: 10.1021/acs.inorgchem.3c03531. Epub 2024 Feb 16.

Abstract

Treatment of Co(OTf)2·6H2O, Li[(pzTp)FeIII(CN)3], and H3PMo12O40·nH2O in protic solvents afforded two structurally related Fe-Co cyanometallate complexes: [{(pzTp)Fe(CN)3}3Co3(MeOH)10][PMo12O40]·H2O·11MeOH (1, pzTp- = tetra(pyrazolyl)borate) and {[(pzTp)Fe(CN)3]4Co3(MeOH)5(H2O)3}n[HPMo12O40]n·3 nMeOH·6.5nH2O (2). Complex 1 consists of a cyanide-bridged hexanuclear [Fe3Co3] cage, characterized by the fused conjunction of two mutually perpendicular trigonal bipyramids (TBPs, [Fe2Co3] and [Co2Fe3]), while complex 2 showcases an intricate cyanide-bridged Fe-Co tape comprising a central chain backbone of vertex-sharing [Fe2Co3] TBPs alongside peripheral [Fe2Co2] squares. Complex 2 is among the widest one-dimensional coordination assemblies characterized by the single-crystal X-ray diffraction technique. Magnetic studies revealed that complex 2 behaved as a single chain magnet with an effective energy barrier (Ueff/kB) of 46.8 K. Our findings highlight the possibilities in the development of cyanometallate-POM hybrid materials with captivating magnetic properties.