Temporal Dynamics of Cyanobacterial Bloom Community Composition and Toxin Production from Urban Lakes

bioRxiv [Preprint]. 2024 Feb 10:2024.02.07.579333. doi: 10.1101/2024.02.07.579333.

Abstract

With a long evolutionary history and a need to adapt to a changing environment, cyanobacteria in freshwater systems use specialized metabolites for communication, defense, and physiological processes. However, the role that these metabolites play in differentiating species, maintaining microbial communities, and generating niche persistence and expansion is poorly understood. Furthermore, many cyanobacterial specialized metabolites and toxins present significant human health concerns due to their liver toxicity and their potential impact to drinking water. Gaps in knowledge exist with respect to changes in species diversity and toxin production during a cyanobacterial bloom (cyanoHAB) event; addressing these gaps will improve understanding of impacts to public and ecological health. In the current project, we utilized a multiomics strategy (DNA metabarcoding and metabolomics) to determine the cyanobacterial community composition, toxin profile, and the specialized metabolite pool at three freshwater lakes in Providence, RI during summer-fall cyanoHABs. Species diversity decreased at all study sites over the course of the bloom event, and toxin production reached a maximum at the midpoint of the event. Additionally, LC-MS/MS-based molecular networking identified new toxin congeners. This work provokes intriguing questions with respect to the use of allelopathy by organisms in these systems and the presence of emerging toxic compounds that can impact public health.

Keywords: DNA metabarcoding; cyanoHABs; cyanobacteria; harmful algal blooms; metabolomics; microcystins; molecular networking; species diversity.

Publication types

  • Preprint