DNA of Neutrophil Extracellular Traps Binds TMCO6 to Impair CD8+ T-cell Immunity in Hepatocellular Carcinoma

Cancer Res. 2024 May 15;84(10):1613-1629. doi: 10.1158/0008-5472.CAN-23-2986.

Abstract

Neutrophil extracellular traps (NET), formed by the extracellular release of decondensed chromatin and granules, have been shown to promote tumor progression and metastasis. Tumor-associated neutrophils in hepatocellular carcinoma (HCC) are prone to NET formation, highlighting the need for a more comprehensive understanding of the mechanisms of action of NETs in liver cancer. Here, we showed that DNA of NETs (NET-DNA) binds transmembrane and coiled-coil domains 6 (TMCO6) on CD8+ T cells to impair antitumor immunity and thereby promote HCC progression. TGFβ1 induced NET formation, which recruited CD8+ T cells. Binding to NET-DNA inhibited CD8+ T cells function while increasing apoptosis and TGFβ1 secretion, forming a positive feedback loop to further stimulate NET formation and immunosuppression. Mechanistically, the N-terminus of TMCO6 interacted with NET-DNA and suppressed T-cell receptor signaling and NFκB p65 nuclear translocation. Blocking NET formation by inhibiting PAD4 induced potent antitumor effects in wild-type mice but not TMCO6-/- mice. In clinical samples, CD8+ T cells expressing TMCO6 had an exhausted phenotype. TGFβ1 signaling inhibition or TMCO6 deficiency combined with anti-PD-1 abolished NET-driven HCC progression in vivo. Collectively, this study unveils the role of NET-DNA in impairing CD8+ T-cell immunity by binding TMCO6 and identifies targeting this axis as an immunotherapeutic strategy for blocking HCC progression.

Significance: TMCO6 is a receptor for DNA of NETs that mediates CD8+ T-cell dysfunction in HCC, indicating that the NET-TMCO6 axis is a promising target for overcoming immunosuppression in liver cancer.

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes* / immunology
  • CD8-Positive T-Lymphocytes* / metabolism
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / immunology
  • Carcinoma, Hepatocellular* / metabolism
  • Carcinoma, Hepatocellular* / pathology
  • Cell Line, Tumor
  • DNA / immunology
  • DNA / metabolism
  • Extracellular Traps* / immunology
  • Extracellular Traps* / metabolism
  • Humans
  • Liver Neoplasms* / immunology
  • Liver Neoplasms* / metabolism
  • Liver Neoplasms* / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neutrophils / immunology
  • Neutrophils / metabolism
  • Transforming Growth Factor beta1 / metabolism