High-resolution RNA tertiary structures in Zika virus stem-loop A for the development of inhibitory small molecules

RNA. 2024 May 16;30(6):609-623. doi: 10.1261/rna.079796.123.

Abstract

Flaviviruses such as Zika (ZIKV) and dengue virus (DENV) are positive-sense RNA viruses belonging to Flaviviridae The flavivirus genome contains a 5' end stem-loop promoter sequence known as stem-loop A (SLA) that is recognized by the flavivirus polymerase NS5 during viral RNA synthesis and 5' guanosine cap methylation. The crystal structures of ZIKV and DENV SLAs show a well-defined fold, consisting of a bottom stem, side loop, and top stem-loop, providing unique interaction sites for small molecule inhibitors to disrupt the promoter function. To facilitate the identification of small molecule binding sites in flavivirus SLA, we determined high-resolution structures of the bottom and top stems of ZIKV SLA, which contain a single U- or G-bulge, respectively. Both bulge nucleotides exhibit multiple orientations, from folded back on the adjacent nucleotide to flipped out of the helix, and are stabilized by stacking or base triple interactions. These structures suggest that even a single unpaired nucleotide can provide flexibility to RNA structures, and its conformation is mainly determined by the stabilizing chemical environment. To facilitate discovery of small molecule inhibitors that interfere with the functions of ZIKV SLA, we screened and identified compounds that bind to the bottom and top stems of ZIKV SLA.

Keywords: Flavivirus; RNA promoter; RNA structure; X-ray crystallography; Zika virus; small molecule inhibitor; stem–loop A.

MeSH terms

  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology
  • Binding Sites
  • Crystallography, X-Ray
  • Models, Molecular
  • Nucleic Acid Conformation*
  • Promoter Regions, Genetic
  • RNA, Viral* / chemistry
  • RNA, Viral* / genetics
  • RNA, Viral* / metabolism
  • Small Molecule Libraries* / chemistry
  • Small Molecule Libraries* / pharmacology
  • Zika Virus* / drug effects
  • Zika Virus* / genetics