Molecular Characterization and Phylogenetic Analysis of Centipedegrass [ Eremochloa ophiuroides (Munro) Hack.] Based on the Complete Chloroplast Genome Sequence

Curr Issues Mol Biol. 2024 Feb 19;46(2):1635-1650. doi: 10.3390/cimb46020106.

Abstract

Centipedegrass (Eremochloa ophiuroides) is an important warm-season grass plant used as a turfgrass as well as pasture grass in tropical and subtropical regions, with wide application in land surface greening and soil conservation in South China and southern United States. In this study, the complete cp genome of E. ophiuroides was assembled using high-throughput Illumina sequencing technology. The circle pseudomolecule for E. ophiuroides cp genome is 139,107 bp in length, with a quadripartite structure consisting of a large single copyregion of 82,081 bp and a small single copy region of 12,566 bp separated by a pair of inverted repeat regions of 22,230 bp each. The overall A + T content of the whole genome is 61.60%, showing an asymmetric nucleotide composition. The genome encodes a total of 131 gene species, composed of 20 duplicated genes within the IR regions and 111 unique genes comprising 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosome RNA genes. The complete cp genome sequence contains 51 long repeats and 197 simple sequence repeats, and a high degree of collinearity among E. ophiuroide and other Gramineae plants was disclosed. Phylogenetic analysis showed E. ophiuroides, together with the other two Eremochloa species, is closely related to Mnesithea helferi within the subtribe Rottboelliinae. These findings will be beneficial for the classification and identification of the Eremochloa taxa, phylogenetic resolution, novel gene discovery, and functional genomic studies for the genus Eremochloa.

Keywords: Eremochloa ophiuroides; chloroplast; gene content; genome structure; phylogeny.