Artificial intelligence in endoscopy related to inflammatory bowel disease: A systematic review

Indian J Gastroenterol. 2024 Feb;43(1):172-187. doi: 10.1007/s12664-024-01531-3. Epub 2024 Feb 28.

Abstract

Background and objectives: In spite of rapid growth of artificial intelligence (AI) in digestive endoscopy in lesion detection and characterization, the role of AI in inflammatory bowel disease (IBD) endoscopy is not clearly defined. We aimed at systematically reviewing the role of AI in IBD endoscopy and identifying future research areas.

Methods: We searched the PubMed and Embase database using keywords ("artificial intelligence" OR "machine learning" OR "computer-aided" OR "convolutional neural network") AND ("inflammatory bowel disease" OR "ulcerative colitis" OR "Crohn's") AND ("endoscopy" or "colonoscopy" or "capsule endoscopy" or "device assisted enteroscopy") between 1975 and September 2023 and identified 62 original articles for detailed review. Review articles, consensus guidelines, case reports/series, editorials, letter to the editor, non-peer-reviewed pre-prints and conference abstracts were excluded. The quality of the included studies was assessed using the MI-CLAIM checklist.

Results: The accuracy of AI models (25 studies) to assess ulcerative colitis (UC) endoscopic activity ranged between 86.54% and 94.5%. AI-assisted capsule endoscopy reading (12 studies) substantially reduced analyzable images and reading time with excellent accuracy (90.5% to 99.9%). AI-assisted analysis of colonoscopic images can help differentiate IBD from non-IBD, UC from non-UC and UC from Crohn's disease (CD) (three studies) with 72.1%, 98.3% and > 90% accuracy, respectively. AI models based on non-invasive clinical and radiologic parameters could predict endoscopic activity (three studies). AI-assisted virtual chromoendoscopy (four studies) could predict histologic remission and long-term outcomes. Computer-assisted detection (CADe) of dysplasia (two studies) is feasible along with AI-based differentiation of high from low-grade IBD neoplasia (79% accuracy). AI is effective in linking electronic medical record data (two studies) with colonoscopic videos to facilitate widespread machine learning.

Conclusion: AI-assisted IBD endoscopy has the potential to impact clinical management by automated detection and characterization of endoscopic lesions. Large, multi-center, prospective studies and commercially available IBD-specific endoscopic AI algorithms are warranted.

Keywords: Artificial intelligence; Convolutional neural network; Crohn’s disease; Endoscopy; Inflammatory bowel disease; Machine learning; Ulcerative colitis.

Publication types

  • Systematic Review
  • Review

MeSH terms

  • Artificial Intelligence
  • Capsule Endoscopy*
  • Colitis, Ulcerative* / diagnosis
  • Colonoscopy
  • Crohn Disease* / pathology
  • Humans
  • Inflammatory Bowel Diseases* / diagnosis
  • Prospective Studies