Clinical, qualitative imaging biomarkers, and tumor oxygenation imaging biomarkers for differentiation of midline-located IDH wild-type glioblastomas and H3 K27-altered diffuse midline gliomas in adults

Eur J Radiol. 2024 Apr:173:111384. doi: 10.1016/j.ejrad.2024.111384. Epub 2024 Feb 18.

Abstract

Purpose: To compare the clinical, qualitative and quantitative imaging phenotypes, including tumor oxygenation characteristics of midline-located IDH-wildtype glioblastomas (GBMs) and H3 K27-altered diffuse midline gliomas (DMGs) in adults.

Methods: Preoperative MRI data of 55 adult patients with midline-located IDH-wildtype GBM or H3 K27-altered DMG (32 IDH-wildtype GBM and 23 H3 K27-altered DMG patients) were included. Qualitative imaging assessment was performed. Quantitative imaging assessment including the tumor volume, normalized cerebral blood volume, capillary transit time heterogeneity (CTH), oxygen extraction fraction (OEF), relative cerebral metabolic rate of oxygen values, and mean ADC value were performed from the tumor mask via automatic segmentation. Univariable and multivariable logistic analyses were performed.

Results: On multivariable analysis, age (odds ratio [OR] = 0.92, P = 0.015), thalamus or medulla location (OR = 10.48, P = 0.013), presence of necrosis (OR = 0.15, P = 0.038), and OEF (OR = 0.01, P = 0.042) were independent predictors to differentiate H3 K27-altered DMG from midline-located IDH-wildtype GBM. The area under the curve, accuracy, sensitivity, and specificity of the multivariable model were 0.88 (95 % confidence interval: 0.77-0.95), 81.8 %, 82.6 %, and 81.3 %, respectively.

Conclusions: Along with younger age, tumor location, less frequent necrosis, and lower OEF may be useful imaging biomarkers to differentiate H3 K27-altered DMG from midline-located IDH-wildtype GBM. Tumor oxygenation imaging biomarkers may reflect the less hypoxic nature of H3 K27-altered DMG than IDH-wildtype GBM and may contribute to differentiation.

Keywords: Adult; Diffuse midline glioma; Glioblastoma; Perfusion magnetic resonance imaging.

MeSH terms

  • Adult
  • Biomarkers, Tumor / genetics
  • Brain Neoplasms* / pathology
  • Glioblastoma* / pathology
  • Glioma* / pathology
  • Humans
  • Mutation
  • Necrosis
  • Oxygen

Substances

  • Biomarkers, Tumor
  • Oxygen