Complex adaptive systems-based framework for modeling the health impacts of climate change

J Clim Chang Health. 2024 Jan-Feb:15:100292. doi: 10.1016/j.joclim.2023.100292.


Introduction: Climate change is a global phenomenon with far-reaching consequences, and its impact on human health is a growing concern. The intricate interplay of various factors makes it challenging to accurately predict and understand the implications of climate change on human well-being. Conventional methodologies have limitations in comprehensively addressing the complexity and nonlinearity inherent in the relationships between climate change and health outcomes.

Objectives: The primary objective of this paper is to develop a robust theoretical framework that can effectively analyze and interpret the intricate web of variables influencing the human health impacts of climate change. By doing so, we aim to overcome the limitations of conventional approaches and provide a more nuanced understanding of the complex relationships involved. Furthermore, we seek to explore practical applications of this theoretical framework to enhance our ability to predict, mitigate, and adapt to the diverse health challenges posed by a changing climate.

Methods: Addressing the challenges outlined in the objectives, this study introduces the Complex Adaptive Systems (CAS) framework, acknowledging its significance in capturing the nuanced dynamics of health effects linked to climate change. The research utilizes a blend of field observations, expert interviews, key informant interviews, and an extensive literature review to shape the development of the CAS framework.

Results and discussion: The proposed CAS framework categorizes findings into six key sub-systems: ecological services, extreme weather, infectious diseases, food security, disaster risk management, and clinical public health. The study employs agent-based modeling, using causal loop diagrams (CLDs) tailored for each CAS sub-system. A set of identified variables is incorporated into predictive modeling to enhance the understanding of health outcomes within the CAS framework. Through a combination of theoretical development and practical application, this paper aspires to contribute valuable insights to the interdisciplinary field of climate change and health. Integrating agent-based modeling and CLDs enhances the predictive capabilities required for effective health outcome analysis in the context of climate change.

Conclusion: This paper serves as a valuable resource for policymakers, researchers, and public health professionals by employing a CAS framework to understand and assess the complex network of health impacts associated with climate change. It offers insights into effective strategies for safeguarding human health amidst current and future climate challenges.

Keywords: Agent-based modeling; Climate change; Clinical public health; Complex adaptive systems; Disaster risk management; Ecological services; Extreme weather; Food security; Health; Infectious disease.