Dynamic structured illumination for confocal microscopy

Opt Lett. 2024 Mar 1;49(5):1177-1180. doi: 10.1364/OL.500524.

Abstract

Structured illumination enables the tailoring of an imaging device's optical transfer function to enhance resolution. We propose the incorporation of a temporal periodic modulation, specifically a rotating mask, to encode multiple transfer functions in the temporal domain. This approach is demonstrated using a confocal microscope configuration. At each scanning position, a temporal periodic signal is recorded. By filtering around each harmonic of the rotation frequency, multiple images of the same object can be constructed. The image carried by the nth harmonic is a convolution of the object with a phase vortex of topological charge n, similar to the outcome when using a vortex phase plate as an illumination. This enables the collection of chosen high spatial frequencies from the sample, thereby enhancing the spatial resolution of the confocal microscope.