Broadband antireflection (AR) is highly significant in a wide range of optical applications, and using a gold (Au) micropattern presents a viable method for controlling the behavior of light propagation. This study investigates a novel, to the best of our knowledge, methodology to achieve broadband AR properties in Au micropatterns. It employed the three-dimensional finite-difference time-domain (FDTD) method to simulate and optimize the design of micropatterns. In contrast, the fabrication of Au micropatterns was carried out using two-beam laser interference lithography (LIL). The fabricated Au micropatterns were characterized by a scanning electron microscope (SEM) and spectroscope to validate their antireflection and transmission properties and evaluate their performance at various wavelengths. The optimized Au micropatterns had a high transmittance rating of 96.2%. In addition, the device exhibits a broad-spectrum antireflective property, covering wavelengths ranging from 400 to 1100 nm. The simulation data and experimentally derived results show comparable patterns. These structures can potentially be employed in many optical devices, such as solar cells and photodetectors, whereby achieving optimal device performance reduced reflection and enhanced light absorption.