Aerobic Exercise and Endocannabinoids: A Narrative Review of Stress Regulation and Brain Reward Systems

Cureus. 2024 Mar 4;16(3):e55468. doi: 10.7759/cureus.55468. eCollection 2024 Mar.

Abstract

Aerobic exercise is a widely adopted practice, not solely for enhancing fitness and reducing the risk of various diseases but also for its ability to uplift mood and aid in addressing depression and anxiety disorders. Within the scope of this narrative review, we seek to consolidate current insights into the endocannabinoid-mediated regulation of stress and the brain's reward mechanism resulting from engaging in aerobic exercise. A comprehensive search was conducted across Medline, SPORTDiscus, Pubmed, and Scopus, encompassing data available until November 30, 2023. This review indicates that a bout of aerobic exercise, particularly of moderate intensity, markedly augments circulating levels of endocannabinoids - N-arachidonoyl-ethanolamine (AEA) and 2-acylglycerol (2-AG), that significantly contributes to mood elevation and reducing stress in healthy individuals. The current understanding of how aerobic exercise impacts mental health and mood improvement is still unclear. Moderate and high-intensity aerobic exercise modulates stress through a negative feedback mechanism targeting both the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system, thereby facilitating stress regulation crucial role in endocannabinoid synthesis, ultimately culminating in the orchestration of negative feedback across multiple tiers of the HPA axis, coupled with its influence over cortical and subcortical brain structures. The endocannabinoid has been observed to govern the release of neurotransmitters from diverse neuronal populations, implying a universal mechanism that fine-tunes neuronal activity and consequently modulates both emotional and stress-related responses. Endocannabinoids further assume a pivotal function within brain reward mechanisms, primarily mediated by CB1 receptors distributed across diverse cerebral centers. Notably, these endocannabinoids partake in natural reward processes, as exemplified in aerobic exercise, by synergizing with the dopaminergic reward system. The genesis of this reward pathway can be traced to the ventral tegmental area, with dopamine neurons predominantly projecting to the nucleus accumbens, thereby inciting dopamine release in response to rewarding stimuli.

Keywords: 2-acylglycerol; acute exercise; aerobic training; cannabinoid receptors; endocannabinoid system; endocannabinoids; hpa axis; mood; n-arachidonoyl-ethanolamine; stress management.

Publication types

  • Review