Using RNA interference targeting a nicotinic acetylcholine receptor subunit to counteract insecticide accommodation mechanisms: example of the β1 subunit in the imidacloprid-accommodated American cockroach, Periplaneta americana

J Pestic Sci. 2024 Feb 20;49(1):58-64. doi: 10.1584/jpestics.D23-027.

Abstract

Insecticide accommodation and resistance are limiting factors to the much-needed increase in agricultural production. Various physiological and cellular modifications, such as the changes of insecticide molecular targets, have been linked to these events. Thus, a previous study demonstrated that the imidacloprid accommodation set up by the cockroach Periplaneta americana after an exposure to a sublethal dose of this insecticide involves functional alterations of two nicotinic acetylcholine receptor (nAChR) subtypes. As RNA interference (RNAi) is one of the most promising strategies for controlling pest insects, we evaluated, in this study, the use of RNAi that targets the β1 nAChR subunit to counteract the imidacloprid accommodation phenomenon in cockroaches. Interestingly, we showed that ingestion of dsRNA-β1 increased the sensitivity to imidacloprid of accommodated cockroaches. Thus, we have demonstrated for the first time that RNAi that targets an nAChR subunit can counteract the accommodation mechanism to insecticide targeting nAChRs set up by an insect.

Keywords: RNA interference; imidacloprid; insecticide resistance; nicotinic acetylcholine receptor subunit; pest control.