Background: Intratumoral injection of oncolytic viruses (OVs) shows promise in immunotherapy: ONCOS-102, a genetically engineered OV that encodes Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) demonstrated efficacy in early clinical trials, enhancing T cell infiltration in tumors. This suggests OVs may boost various forms of immunotherapy, including tumor-specific bi-specific antibodies (BsAbs).
Methods: Our study investigated in vitro, how ONCOS-204, a variant of ONCOS-virus expressing the ligand of inducible T-cell co-stimulator (ICOSL), modulates the process of T cell activation induced by a BsAb. ONCOS-102 was used for comparison. Phenotypic and functional changes induced by combination of different OVs, and BsAb in T cell subsets were assessed by flow cytometry, viability, and proliferation assays.
Results: Degranulation and IFNγ and TNF production of T cells, especially CD4 + T cells was the most increased upon target cell exposure to ONCOS-204. Unexpectedly, ONCOS-204 profoundly affected CD8 + T cell proliferation and function through ICOS-L/ICOS interaction. The effect solely depended on cell surface expression of ICOS-L as soluble ICOSL did not induce notable T cell activity.
Conclusions: Together, our data suggests that oncolytic adenoviruses encoding ICOSL may enhance functional activity of tumor-specific BsAbs thereby opening a novel avenue for clinical development in immunotherapeutics.
Keywords: Bi-specific antibody; ICOS; Immunotherapy; Oncolytic virus; T cell.
© 2024. The Author(s).