Dynamic intervention to enhance the stability of PEGylated Ibrutinib loaded lipidic nano-vesicular systems: transitioning from colloidal dispersion to lyophilized product

Drug Deliv Transl Res. 2024 Mar 8. doi: 10.1007/s13346-024-01555-4. Online ahead of print.

Abstract

Liposomes being a promising colloidal system facilitates delivery of drugs with limited pharmacokinetic properties to achieve desirable clinical applications. However, development of a stable liposomal system is always challenging due to multiple complexities involved. Aqueous instability of liposomes and impact of various process and formulation parameters can lead to serious alteration of its therapeutic performance. In the proposed work, the authors aim to develop stable Ibrutinib-loaded liposomes using lyophilization and Quality-by-Design and assess their long-term stability. Ibrutinib-loaded liposomes were developed and optimized using Quality-by-Design technique and were further PEGylated and characterized for the same. Effect of cryoprotectants during lyophilization and other parameters are evaluated to obtain a robust formulation. The stability studies were conducted upto 6 months at various storage conditions to evaluate the effect of lyophilization. The impact of formulation, processing and lyophilization parameters on physicochemical properties of developed liposomal systems were evaluated and are critically discussed. Liquid dispersion exhibited a %degradation of 16-36% at 25 °C/60% RH which was reduced for less than 1% in lyophilized formulation for 6 months. Critical analysis and assessment of various parameters lead to identification of optimum conditions to manufacture this drug product and also opens way forward for further evaluation and translational possibilities.

Keywords: Colloidal systems; Freeze-drying; Liposomes; Nanomedicine; PEGylation; Quality-by-design.