Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 8.
doi: 10.1038/s41587-024-02143-0. Online ahead of print.

A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models

Affiliations

A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models

Feng Ren et al. Nat Biotechnol. .

Abstract

Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.

PubMed Disclaimer

Comment in

Similar articles

Cited by

  • Metabolomics-driven approaches for identifying therapeutic targets in drug discovery.
    Pan S, Yin L, Liu J, Tong J, Wang Z, Zhao J, Liu X, Chen Y, Miao J, Zhou Y, Zeng S, Xu T. Pan S, et al. MedComm (2020). 2024 Nov 11;5(11):e792. doi: 10.1002/mco2.792. eCollection 2024 Nov. MedComm (2020). 2024. PMID: 39534557 Free PMC article. Review.
  • Graph neural networks are promising for phenotypic virtual screening on cancer cell lines.
    Vishwakarma S, Hernandez-Hernandez S, Ballester PJ. Vishwakarma S, et al. Biol Methods Protoc. 2024 Sep 3;9(1):bpae065. doi: 10.1093/biomethods/bpae065. eCollection 2024. Biol Methods Protoc. 2024. PMID: 39502795 Free PMC article.
  • Longevity biotechnology: bridging AI, biomarkers, geroscience and clinical applications for healthy longevity.
    Lyu YX, Fu Q, Wilczok D, Ying K, King A, Antebi A, Vojta A, Stolzing A, Moskalev A, Georgievskaya A, Maier AB, Olsen A, Groth A, Simon AK, Brunet A, Jamil A, Kulaga A, Bhatti A, Yaden B, Pedersen BK, Schumacher B, Djordjevic B, Kennedy B, Chen C, Huang CY, Correll CU, Murphy CT, Ewald CY, Chen D, Valenzano DR, Sołdacki D, Erritzoe D, Meyer D, Sinclair DA, Chini EN, Teeling EC, Morgen E, Verdin E, Vernet E, Pinilla E, Fang EF, Bischof E, Mercken EM, Finger F, Kuipers F, Pun FW, Gyülveszi G, Civiletto G, Zmudze G, Blander G, Pincus HA, McClure J, Kirkland JL, Peyer J, Justice JN, Vijg J, Gruhn JR, McLaughlin J, Mannick J, Passos J, Baur JA, Betts-LaCroix J, Sedivy JM, Speakman JR, Shlain J, von Maltzahn J, Andreasson KI, Moody K, Palikaras K, Fortney K, Niedernhofer LJ, Rasmussen LJ, Veenhoff LM, Melton L, Ferrucci L, Quarta M, Koval M, Marinova M, Hamalainen M, Unfried M, Ringel MS, Filipovic M, Topors M, Mitin N, Roy N, Pintar N, Barzilai N, Binetti P, Singh P, Kohlhaas P, Robbins PD, Rubin P, Fedichev PO, Kamya P, Muñoz-Canoves P, de Cabo R, Faragher RGA, Konrad R, Ripa R, Mansukhani R, Büttner S, Wickström SA, Brunemeier S, Jakimov S, Luo S, Rosenzweig-Lipson S, Tsai SY, Dimmele… See abstract for full author list ➔ Lyu YX, et al. Aging (Albany NY). 2024 Oct 16;16(20):12955-12976. doi: 10.18632/aging.206135. Epub 2024 Oct 16. Aging (Albany NY). 2024. PMID: 39418098 Free PMC article. Review.
  • The changing scenario of drug discovery using AI to deep learning: Recent advancement, success stories, collaborations, and challenges.
    Chakraborty C, Bhattacharya M, Lee SS, Wen ZH, Lo YH. Chakraborty C, et al. Mol Ther Nucleic Acids. 2024 Aug 8;35(3):102295. doi: 10.1016/j.omtn.2024.102295. eCollection 2024 Sep 10. Mol Ther Nucleic Acids. 2024. PMID: 39257717 Free PMC article. Review.
  • Emerging pharmacological options in the treatment of idiopathic pulmonary fibrosis (IPF).
    Aribindi K, Liu GY, Albertson TE. Aribindi K, et al. Expert Rev Clin Pharmacol. 2024 Sep;17(9):817-835. doi: 10.1080/17512433.2024.2396121. Epub 2024 Aug 27. Expert Rev Clin Pharmacol. 2024. PMID: 39192604 Review.

References

    1. Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016). - PubMed - DOI
    1. Arrowsmith, J. & Miller, P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat. Rev. Drug Discov. 12, 569 (2013). - PubMed - DOI
    1. Krieger, J. L., Li, D. & Papanikolaou, D. Missing Novelty in Drug Development NBER Working Paper No. w24595 (National Bureau of Economic Research, 2018).
    1. Oprea, T. I. et al. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17, 317–332 (2018). - PubMed - PMC - DOI
    1. Aliper, A. Prediction of clinical trials outcomes based on target choice and clinical trial design with multi-modal artificial intelligence. Clin. Pharmacol. Ther. 114, 972–980 (2023). - PubMed - DOI

LinkOut - more resources