Machine Learning and Digital Biomarkers Can Detect Early Stages of Neurodegenerative Diseases

Sensors (Basel). 2024 Feb 29;24(5):1572. doi: 10.3390/s24051572.

Abstract

Neurodegenerative diseases (NDs) such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) are devastating conditions that can develop without noticeable symptoms, causing irreversible damage to neurons before any signs become clinically evident. NDs are a major cause of disability and mortality worldwide. Currently, there are no cures or treatments to halt their progression. Therefore, the development of early detection methods is urgently needed to delay neuronal loss as soon as possible. Despite advancements in Medtech, the early diagnosis of NDs remains a challenge at the intersection of medical, IT, and regulatory fields. Thus, this review explores "digital biomarkers" (tools designed for remote neurocognitive data collection and AI analysis) as a potential solution. The review summarizes that recent studies combining AI with digital biomarkers suggest the possibility of identifying pre-symptomatic indicators of NDs. For instance, research utilizing convolutional neural networks for eye tracking has achieved significant diagnostic accuracies. ROC-AUC scores reached up to 0.88, indicating high model performance in differentiating between PD patients and healthy controls. Similarly, advancements in facial expression analysis through tools have demonstrated significant potential in detecting emotional changes in ND patients, with some models reaching an accuracy of 0.89 and a precision of 0.85. This review follows a structured approach to article selection, starting with a comprehensive database search and culminating in a rigorous quality assessment and meaning for NDs of the different methods. The process is visualized in 10 tables with 54 parameters describing different approaches and their consequences for understanding various mechanisms in ND changes. However, these methods also face challenges related to data accuracy and privacy concerns. To address these issues, this review proposes strategies that emphasize the need for rigorous validation and rapid integration into clinical practice. Such integration could transform ND diagnostics, making early detection tools more cost-effective and globally accessible. In conclusion, this review underscores the urgent need to incorporate validated digital health tools into mainstream medical practice. This integration could indicate a new era in the early diagnosis of neurodegenerative diseases, potentially altering the trajectory of these conditions for millions worldwide. Thus, by highlighting specific and statistically significant findings, this review demonstrates the current progress in this field and the potential impact of these advancements on the global management of NDs.

Keywords: Alzheimer’s disease; Parkinson’s disease; digital endpoints; digital phenotyping; early detection; eye-tracking; machine learning; neurodegenerative diseases; online cognitive testing.

Publication types

  • Review

MeSH terms

  • Alzheimer Disease* / diagnosis
  • Biomarkers
  • Humans
  • Machine Learning
  • Neurodegenerative Diseases* / diagnosis
  • Parkinson Disease*

Substances

  • Biomarkers

Grants and funding

This research received no external funding.