Background: This study aimed to assess the effect of polishing versus glazing of computer-aided design-computer-aided manufacturing (CAD-CAM) ceramics on depth of wear and surface roughness of opposing composite resin.
Materials and methods: This in vitro study was conducted on 40 Z250 composite and 40 CAD-CAM ceramic specimens including Celtra Duo, Vita Mark II, e.max CAD, and Vita Suprinity ceramics. All ceramic specimens were roughened by a fine-grit bur after primary glazing to simulate an adjusted surface in the clinical setting. They were then randomly assigned to two subgroups and underwent reglazing or polishing. All composite and ceramic specimens underwent profilometry after surface treatment and prior to the wear test, and the results were recorded quantitatively. Composite specimens were then subjected to 120,000 wear cycles against ceramic specimens in a chewing simulator, and the depth of wear was measured by a scanner. Data were statistically analyzed by repeated measures two-way analysis of variance (ANOVA) and one-way ANOVA (α = 0.05).
Results: Comparison of the surface roughness of composite specimens before and after the wear test revealed significant differences in both glazed Suprinity (P = 0.048) and Vita Mark II (P = 0.026) ceramics groups. The change in surface roughness after the wear test (compared with baseline) was significant in glazed (P = 0.000) and polished (P = 0.013) Vita Mark II and polished Suprinity (P = 0.037) ceramics, but this change was not significant in other ceramics (P > 0.05). The depth of wear after the wear test was not significantly different among the ceramic and composite subgroups (P > 0.05).
Conclusion: Assessment of depth of wear and surface roughness of composite specimens showed that the polishing kits of CAD-CAM ceramics can serve as a suitable alternative to reglazing.
Keywords: Composite resins; computer-aided design; dental restoration wear.
Copyright: © 2024 Dental Research Journal.