Bone Marrow-Derived C-Kit+ Cells Improved Inflammatory IL-33/ST-2/ILC2 Axis in the Lung Tissue of Type 2 Diabetic Rats

Appl Biochem Biotechnol. 2024 Mar 13. doi: 10.1007/s12010-024-04870-1. Online ahead of print.

Abstract

Inflammation is an essential factor in pulmonary complications of diabetes. Bone marrow (BM)-derived C-kit+ cells have immunomodulatory properties and their transplantation is suggested as a promising strategy for ameliorating diabetes complications. This study evaluated the effect of BM-derived C-kit+ cells on the inflammation signaling pathway in lung tissue of type 2 diabetic male rats. Ten rats were used to extract C-kit cells, and 48 male Wistar rats weighing 180 ± 20 g were randomly divided into four equal groups: (1) Control (Cont), (2) Diabetic (D), (3) Diabetic + C-kit+ cells (D + C-kit pos) intravenously injected 50-µl phosphate buffer saline (PBS) containing 300,000 C-kit+ cells, and (4) Diabetic + C-kit- cells (D + C-kit neg), intravenously injected C-kit- cells. Diabetes induction increased IL-33, ST-2, CD127, and IL-2 levels and decreased IL-10. C-kit+ cell therapy significantly decreased IL-33 and CD127 and increased IL-10. In addition, lung histopathological changes significantly improved in the C-kit+ group compared to the diabetic group. These findings suggest that C-kit+ cells may have a potential therapeutic role in mitigating diabetes-induced respiratory complications via ameliorating the inflammation and histopathological changes in lung tissue.

Keywords: C-kit+ stem cells; CD127; Diabetes mellitus; Lung inflammation; ST-2.