Compound collagen peptide powder improves skin photoaging by reducing oxidative stress and activating TGF-β1/Smad pathway

Photochem Photobiol. 2024 Mar 19. doi: 10.1111/php.13940. Online ahead of print.


Fish collagen peptide (FCP) has been extensively investigated as a natural product that can combat photoaging; however, its efficacy is limited by its singular composition. Compound collagen peptide powder (CCPP) is a novel functional food formulation that exhibits photoprotective properties and comprises FCP and a blend of natural botanical ingredients. The objective of this study was to investigate the efficacy of CCPP and its molecular mechanism. CCPP had a low molecular weight, facilitating its efficient absorption, and was abundant in amino acids, total polyphenols, and total flavonoids. The results of in vivo studies demonstrated that CCPP exhibited significant efficacy in reducing skin wrinkles, enhancing the contents of water and oil in the skin, and ameliorating histopathological alterations in mice. The results of in vitro studies demonstrated that CCPP effectively mitigated photoaging in human skin fibroblasts by attenuating oxidative stress and promoting extracellular matrix (ECM) synthesis. Moreover, we clearly demonstrated that the TGF β1/Smad pathway was involved in the promotion of ECM synthesis and cell proliferation by CCPP in human skin fibroblasts. These findings suggest that, compared with single collagen, CCPP has a more comprehensive range of antiphotoaging properties.

Keywords: TGF-β1/Smad pathway; compound collagen peptide powder; fish collagen peptide; oxidative stress; photoaging.