We have used 4 cell-type-specific markers to identify individual glial and neuronal cells in dissociated cell cultures of neonatal rat sciatic nerve, dorsal root ganglia (DRG), optic nerve, cerebellum, corpus callosum, cerebral cortex and leptomeninges. Schwann cells were identified with antibodies against rat neural antigen-1 (Ran-1), neurons with tetanus toxin, astrocytes with antibody against the glial fibrillary acidic protein (GFAP) and oligodendrocytes with antibody against galactocerebroside. All of these ligands react with cell surface molecules except for anti-GFAP antibody which binds to intracellular glial filaments. Using two-fluorochrome immunofluorescence we have studied the distribution of various glycoproteins and glycolipids on these 4 major neural cell types in short-term cultures. We have found that (1) although Ran-1 is expressed on glial and neuronal tumours, it was not found on normal astrocytes, oligodendrocytes or neurons; (2) Thy-1 was present on fibroblasts and some neurons but not on the majority of leptomeningeal cells or on oligodendrocytes or astrocytes in short-term cultures (however, it was expressed on some astrocytes in longer term cultures); (3) the 'large external transformation sensitive' (LETS) protein could be detected on fibroblasts and leptomeningeal cells but not on neurons or glial cells; (4) GM1 was present on all neurons, most oligodendrocytes and approx. 50% of other cell types; sulfatide and GM3 were only detectable on oligodendrocytes, while globoside was only found on some neurons. In addition, we were able to identify putative microglial cells by the presence of cell surface receptors for IgG and by their phagocytic activity; they did not express and of the cell-type-specific defining markers.