Faecal cortisol metabolites, body temperature, and behaviour of beef cattle exposed to a heat load

Animal. 2024 Apr;18(4):101112. doi: 10.1016/j.animal.2024.101112. Epub 2024 Feb 15.

Abstract

Feedlot cattle are at times exposed to high environmental temperatures. Faecal cortisol metabolites were related to possible indicators of heat stress that could be measured under field conditions: respiratory dynamics (respiration rate), body surface temperature and adaptive behaviours, such as water consumption, posture (standing, lying), and activity (eating, drinking and rumination). Twelve (12) yearling Black Angus steers were divided into two treatment groups: a hot treatment (HOT; n = 6) and a thermoneutral-treatment (TN; n = 6) and individually housed in a climate-controlled facility at The University of Queensland, Australia. In the TN treatment, all animals were exposed to an ambient temperature of 20.34 ± 0.25 °C, relative humidity 71.51 ± 3.26% and Temperature humidity index (THI) 66.91 ± 0.33 throughout. In the HOT treatment group, environmental conditions were exposed to different climatic phases from thermoneutral to hot conditions, where they remained for 7 d, and then returned to TN conditions in the recovery period. The dry bulb ambient temperature (TA) and relative humidity (RH) in the pens of cattle in the HOT treatment were increased from 28 °C (daily maximum ambient temperature) and 45% RH at 0700 h to a daily maximum TA and RH of 35 °C (daily maximum ambient temperature) and 50% (THI 77) at 1100 h, which was maintained until 1600 h, after which it declined until it reached the baseline at 2000 h. In both treatments, there was a significant decrease in faecal cortisol metabolite concentration from the start to the end of the experiments they adapted to the experimental facility. The concentration of faecal cortisol metabolites was greater in the HOT treatment, compared to the TN treatment during the heat exposure period, but there was no difference in the transition or recovery periods. Respiration rate was greater in the HOT treatment during heat exposure, and it increased with ambient dry bulb temperature above 26 °C, the latter being the upper critical temperature. Although positive correlations were detected between faecal cortisol metabolites and body surface temperature measurements, particularly the shoulder and rump, as well as standing time, panting score and drinking, a stepwise regression found that faecal cortisol metabolites were only significantly correlated with one variable, respiration rate. It is concluded that respiration rate is the best indicator of the stress induced by hot conditions for cattle.

Keywords: Ambient temperature; Feedlot; Heat stress; Hot conditions; Non-invasive.

MeSH terms

  • Animals
  • Body Temperature*
  • Cattle
  • Heat-Shock Response
  • Hot Temperature
  • Humidity
  • Hydrocortisone*
  • Temperature

Substances

  • Hydrocortisone