Background: Interleukin 4 (IL-4), increased in tuberculosis infection, may impair bacterial killing. Blocking IL-4 confers benefit in animal models. We evaluated safety and efficacy of pascolizumab (humanized anti-IL-4 monoclonal antibody) as adjunctive tuberculosis treatment.
Methods: Participants with rifampicin-susceptible pulmonary tuberculosis received a single intravenous infusion of pascolizumab or placebo, and standard 6-month tuberculosis treatment. Pascolizumab dose increased in successive cohorts: (1) nonrandomized 0.05 mg/kg (n = 4); (2) nonrandomized 0.5 mg/kg (n = 4); (3) randomized 2.5 mg/kg (n = 9) or placebo (n = 3); and (4) randomized 10 mg/kg (n = 9) or placebo (n = 3). Coprimary safety outcome was study-drug-related grade 4 or serious adverse event (G4/SAE) in all cohorts (1-4). Coprimary efficacy outcome was week 8 sputum culture time-to-positivity (TTP) in randomized cohorts (3-4) combined.
Results: Pascolizumab levels exceeded IL-4 50% neutralizing dose for 8 weeks in 78%-100% of participants in cohorts 3-4. There were no study-drug-related G4/SAEs. Median week-8 TTP was 42 days in pascolizumab and placebo groups (P = .185). Rate of TTP increase was greater with pascolizumab (difference from placebo 0.011 log10 TTP/day; 95% Bayesian credible interval 0.006 to 0.015 log10 TTP/day).
Conclusions: There was no evidence to suggest blocking IL-4 was unsafe. Preliminary efficacy findings are consistent with animal models. This supports further investigation of adjunctive anti-IL-4 interventions for tuberculosis in larger phase 2 trials.
Clinical trials registration: NCT01638520.
Keywords: clinical trial; host-directed therapy; interleukin-4; pascolizumab; tuberculosis.
© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.