Recent progress in surface engineering methods and advanced applications of flexible polymeric foams

Adv Colloid Interface Sci. 2024 Apr:326:103132. doi: 10.1016/j.cis.2024.103132. Epub 2024 Mar 16.

Abstract

Polymeric foams, also known as three-dimensional (3D) polymeric sponges, are lightweight, flexible, compressible, and possess a high surface area compared with other bulk polymers. These sponges have traditionally been used for mattresses or seat cushions in homes, offices, aircraft, automobiles, and trains, and to insulate against heat, electricity, and noise. Recently, the demand for modern materials has expanded the application of polymeric foams to various high-value technologies, including in areas that need high flame retardancy, flame sensors, oil/water separation, metal adsorption, solar steam generation, piezoresistivity, electromagnetic interference shielding, thermal energy storage, catalysis, supercapacitors, batteries, and triboelectric energy harvesting. Proper modification of foams is a prerequisite for their use in high-value applications. Several new strategies for the surface coating of 3D porous foams and novel emerging applications have been recently developed. Therefore, in this review, current advances in the field of surface coating and the application of 3D polymeric foams are discussed. A brief background on 3D polymeric foams, including the unique properties and benefits of polymeric sponges and their routes of synthesis, is presented. Different coating strategies for polymeric sponges are discussed, and their advantages and drawbacks are highlighted. Different advanced applications of polymeric sponges, in conjunction with specific and detailed examples of the above-mentioned applications, are also described. Finally, challenges and potential applications related to the coating of polymeric foams are discussed. We envisage that this review will be useful to facilitate further research, promote continued efforts on the advanced applications mentioned above, and provide new stimuli for the design of novel polymeric sponges for future modern applications.

Keywords: Advanced multiple applications; Melamine foam; Natural rubber latex foam; Polyurethane foam; Surface coating.

Publication types

  • Review