Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe hereditary arrhythmia syndrome predominantly affecting children and young adults. It manifests through bidirectional or polymorphic ventricular arrhythmia, often culminating in syncope triggered by physical exertion or emotional stress which can lead to sudden cardiac death. Most cases stem from mutations in the gene responsible for encoding the cardiac ryanodine receptor (RyR2), or in the Calsequestrin 2 gene (CASQ2), disrupting the handling of calcium ions within the cardiac myocyte sarcoplasmic reticulum. Diagnosing CPVT typically involves unmasking the arrhythmia through exercise stress testing. This diagnosis emerges in the absence of structural heart disease by cardiac imaging and with a normal baseline electrocardiogram. Traditional first-line treatment primarily involves β-blocker therapy, significantly reducing CPVT-associated mortality. Adjunctive therapies such as moderate exercise training, flecainide, left cardiac sympathetic denervation and implantable cardioverter-defibrillators have been utilized with reasonable success. However, the spectrum of options for managing CPVT has expanded over time, demonstrating decreased rates of arrhythmic events. Furthermore, ongoing research into potential new therapies including gene therapies has the potential to further enhance treatment paradigms. This review aims to succinctly encapsulate the contemporary understanding of the clinical characteristics, diagnostic approach, established therapeutic interventions and the promising future directions in managing CPVT.
Keywords: arrhythmias; beta-blockers; catecholaminergic polymorphic ventricular tachycardia; electrophysiology; flecainide; gene therapy; left cardiac sympathetic denervation; precision medicine; sudden cardiac death.